LESSON 4-1 Classifying Triangles

Interactive Classroom

Glencoe GEGEGMETRY

Copyright © by The McGraw-Hill Companies, Inc.

Five-Minute Check (over Chapter 3)

<u>CCSS</u>

Then/Now

New Vocabulary

Key Concept: Classifications of Triangles by Angles

Example 1: Classify Triangles by Angles

Example 2: Classify Triangles by Angles Within Figures

Key Concept: Classifications of Triangles by Sides

Example 3: Real-World Example: Classify Triangles by Sides

Example 4: Classify Triangles by Sides Within Figures

Example 5: Finding Missing Values

Classifying Triangles

🥑 5-Minute Check

Over Chapter 3

1 What is the special name given to the pair of angles shown by ∠2 and ∠6?

- A. consecutive interior angles
- **B.** corresponding angles
 - C. complementary angles
 - **D.** supplementary

5-Minute Check

Over Chapter 3

Find the slope of the line that contains the points at (4, 4) and (2, -5).

CCSS

Content Standards

G.CO.12 Make formal geometric constructions with a variety of tools and methods (compass and straightedge, string, reflective devices, paper folding, dynamic geometric software, etc.).

Mathematical Practices

- 2 Reason abstractly and quantitatively.
- 6 Attend to precision.

Then

You measured and classified angles.

Now

- Identify and classify triangles by angle measures.
- Identify and classify triangles by side measures.

New Vocabulary

- acute triangle
- equiangular triangle
- obtuse triangle
- right triangle
- equilateral triangle
- isosceles triangle
- scalene triangle

4

EXAMPLE 1 Classify Triangles by Angles

A. Classify the triangle as *acute*, *equiangular*, *obtuse*, or *right*.

Answer: The triangle has three congruent angles. It is an equiangular triangle.

EXAMPLE 1 Classify Triangles by Angles

B. Classify the triangle as *acute*, *equiangular*, *obtuse*, or *right*.

Answer: One angle of the triangle measures 130°, so it is an obtuse angle. The triangle has an obtuse angle, so it is an obtuse triangle.

Classifying Triangles

A. ARCHITECTURE The frame of this window design is made up of many triangles. Classify $\triangle ACD$.

- A. acute
- **B.** equiangular

D. right

Classifying Triangles

B. ARCHITECTURE The frame of this window design is made up of many triangles. Classify $\triangle ADE$.

- A. acute
- **B.** equiangular
- C. obtuse

EXAMPLE 2 Classify Triangles by Angles Within Figures

Classify ΔXYZ as *acute, equiangular, obtuse,* or *right.* Explain your reasoning.

Point *W* is in the interior of $\angle XYZ$, so by the Angle Addition Postulate, $m\angle XYW + m\angle WYZ = m\angle XYZ$. By substitution, $m\angle XYZ = 40 + 50 = 90$.

Answer: Since ΔXYZ has a right angle, it is a right triangle.

Classify ΔACD as acute, equiangular, obtuse, or right.

B. equiangular

C. obtuse

D. right

EXI

4

Real-World Example 3 Classify Triangles by Sides

ARCHITECTURE The triangle truss shown is modeled for steel construction. Classify ΔJMN , ΔJKO , and ΔOLN as equilateral, isosceles, or scalene.

Answer: ΔJMN has no congruent sides, so it is a scalene triangle. ΔJKO has no congruent sides, so it is a scalene triangle. ΔOLN has all sides congruent, so it is an equilateral triangle.

D. right

EXAMPLE 4 Classify Triangles by Sides Within Figures

If point Y is the midpoint of \overline{VX} , and WY = 3.0 units, classify ΔVWY as equilateral, isosceles, or scalene. Explain your reasoning.

By the definition of midpoint, VY = YX.

VY + YX	=	VX
VY + VY	=	8.4
2VY	=	8.4
VY	=	4.2

Segment Addition Postulate Substitution Simplify.

Divide each side by 2.

4

EXAMPLE 4 Classify Triangles by Sides Within Figures

So, VW = 4.5 units, WY = 3.0 units, and VY = 4.2 units.

Answer: Since all three sides have different lengths, the triangle is scalene.

A. equilateral

C. scalene

EXAMPLE 5 Finding Missing Values

ALGEBRA Find the measures of the sides of isosceles triangle KLM with base \overline{KL} .

Step 1	Find d.		
	KM = ML		
4 <i>d</i>	– 13 = 12 – a		
5d	– 13 = 12		
	5d = 25		
	d = 5		

Given

Substitution

Add d to each side.

Add 13 to each side.

Divide each side by 5.

 4_{-1}

EXAMPLE 5 Finding Missing Values

Step 2Substitute to find the length of each side.KM = 4d - 13Given= 4(5) - 13 or 7d = 5ML = KMGiven= 7KM = 7KL = d + 6Given= 5 + 6 or 11d = 5

EXI

Answer: *KM* = *ML* = 7, *KL* = 11

Classifying Triangles

ALGEBRA Find x and the measure of each side of equilateral triangle ABC if AB = 6x - 8, BC = 7 + x, and AC = 13 - x.

- **A**. *x* = 10; all sides are 3.
- **B.** *x* = 6; all sides are 13.
- **(C)** x = 3; all sides are 10.
 - **D**. *x* = 3; all sides are 16.

